

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/python-rets/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/python-rets/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 [image: PyPI version] [https://pypi.python.org/pypi/rets/]
[image: Build Status] [https://travis-ci.org/refindlyllc/rets]
[image: Coverage Status] [https://coveralls.io/github/refindlyllc/rets?branch=master]

RETS

A pure python RETS client for real estate data. Make requests to the MLS
server to get real estate listings, media, and metadata.

[bookmark: installation]Installation

The easiest way to install is through pip.
pip install rets

If you need to build the package locally, it can be downloaded
from github [https://github.com/refindlyllc/rets] and installed
through setuptools.

git clone https://github.com/refindlyllc/rets.git
cd python-rets
python setup.py install

You can now import the rets module within Python.

Quickstart

After installing the rets package locally,
make requests to an MLS server for data.

>>> from rets import Session
>>> login_url = 'http://retrsprovider.com/login'
>>> username = 'user123'
>>> password = 'a48a*32fa$5'
>>> rets_client = Session(login_url, username, password)
>>> rets_client.login()
>>> system_data = rets_client.get_system_metadata()
>>> system_data
{'version': '1.11.76004', 'system_description': 'MLS-RETS', 'system_id': 'MLS-RETS'}
>>> resources = rets_client.get_resource_metadata((resource='Agent')
>>> resources
{'ClassCount': '1',
 'ClassDate': '2016-04-20T15:17:13Z',
 'ClassVersion': '1.00.00023',
 'Date': '2016-12-08T16:15:15Z',
 'Description': 'Agent',
 'EditMaskDate': '2013-03-26T00:10:01Z',
 'EditMaskVersion': '1.00.00000',
 'KeyField': 'unique_id',
 'LookupDate': '2016-05-06T17:05:40Z',
 'LookupVersion': '1.00.00369',
 'ObjectDate': '2014-06-20T14:15:57Z',
 'ObjectVersion': '1.00.00001',
 'ResourceID': 'Agent',
 'SearchHelpDate': '2013-03-26T00:10:01Z',
 'SearchHelpVersion': '1.00.00000',
 'StandardName': 'Agent',
 'TableName': 'AGENT',
 'UpdateHelpDate': '2013-03-26T00:10:01Z',
 'UpdateHelpVersion': '1.00.00000',
 'ValidationExpressionDate': '2013-03-26T00:10:01Z',
 'ValidationExpressionVersion': '1.00.00000',
 'ValidationExternalDate': '2013-03-26T00:10:01Z',
 'ValidationExternalVersion': '1.00.00000',
 'ValidationLookupDate': '2013-03-26T00:10:01Z',
 'ValidationLookupVersion': '1.00.00000',
 'Version': '1.11.73255',
 'VisibleName': 'Agent'}

>>> search_results = rets_client.search(resource='Property', resource_class='RES', limit=1, dmql_query='(ListPrice=150000+)')
>>> for result in search_results:
... result

 {'Acres': '0.0000',
 'ActiveOpenHouseCount': '',
 'AdditionalRooms': 'LAINRE,SCPOLA',
 'AmenRecFreq': '',
 'Amenities': 'BASKET,CLUBHO,COMPOO,COMSPA,EXEROO,EXTSTO,PRIMEM,PUTGRE,SAUNA,SIDEWA,STREET,TENCOU,UNDUTI',
 'AmenityRecFee': '0.00',
 'ApplicationFee': '100.00',
 'ApproxLivingArea': '1946',
 'AssociationMngmtPhone': '',
 'BathsFull': '2',
 'BathsHalf': '0',
 'BathsTotal': '2.00',
 'BedroomDesc': '',
 'Bedrooms': '3',
 'BedsTotal': '3',
 ...
 }
>>> rets_client.logout()

The Session Object

All requests to a RETS server must be authenticated. The login credential
fields must be passed to the Session object at instantiation. As some
RETS servers limit the number of concurrent requests, it is also ideal
to logout when requests to the RETS server are complete.

Session Parameters

	login_url: The login URL for the RETS feed

	username: The username for the RETS feed

	password: The password for the RETS feed

	version: The RETS version is typically provided from the server at login.
You can set the version here to override the value provided by the server

	user_agent: The useragent for the RETS feed. Not all servers require this.

	user_agent_password: The useragent password for the RETS feed. Not all servers require this.

	follow_redirects: Follow HTTP redirects. The default True.

	use_post_method: Use HTTP POST method when making requests instead of GET. The default is True

	metadata_format: COMPACT_DECODED or STANDARD_XML. The client will attempt to set this automatically based on response codes from the RETS server.

Context Manager

If you don’t want to manually call the session’s login and logout methods,
the Session object can be opened in a context manager that logs the client
in and out automatically.

with Session(rets_client = Session(login_url, username, password) as s:
 print('Now logged in')
 system_metadata = s.get_system_metadata()
 search_results = s.search(resource='Property', resource_class='RES', limit=100, dmql_query='(ListPrice=150000+)')
print('Now logged out')
do stuff with the search results

Metadata Methods

The session object can get RETS metadata through the following methods:

rets_client.get_system_metadata()

Returns the METADATA-SYSTEM information in a dictionary.

rets_client.get_resource_metadata(resource=None)

Returns the METADATA-RESOURCE information in a list of dicts. The
resource argument can be supplied to this method to limit the returned
value to just the dict containing that resource.

rets_client.get_class_metadata(resource)

Returns the METADATA-CLASS information for a given resource in a list
of dicts.

rets_client.get_table_metadata(resource, class)

Returns the METADATA-TABLE information for a resource and class
in a list of dicts.

rets_client.get_object_metadata(resource)

Returns the METADATA-OBJECT information for a resource in a list of dicts

rets_client.get_lookup_values(resource, lookup_name)

Returns the METADATA-LOOKUP_TYPE information for a field of a resource

Object Methods

The session can get RETS Objects through the GetObject request. There
are two methods for obtaining objects.

rets_client.get_preferred_object(resource, object_type, content_id, location=0)

Returns a dict containing information on the preferred object for a
given content_id.

rets_client.get_object(resource, object_type, content_ids, object_ids=’*‘, location=0)

Returns a list of dicts containing information on objects for one or more
content_ids. The content_ids can be passed as a list if there are multiple
content_ids. The object_ids variable limits the objects returned to the index
number of each object on the server. This can be useful when getting a single
object or subset of total objects. Each dict contains a key of content_md5 that
contains the md5 checksum for the object. This should help users identify duplicates
supplied by the RETS servers or compare the objects against their previously
saved objects.

Searching

Use the client’s search method to search for real estate data. All searches
must have the resource, class, and search query. The query can be sent
as either a Data Mining Query Language string or a search filter dictionary.

The search method takes the following parameters:

	resource: The resource that contains the class to search

	resource_class: The class to search

	search_filter=None: The query as a dict

	dmql_query=None: The query in dmql format

	limit=None: Limit search values count

	offset=None: Offset for RETS request. Useful when RETS limits number of results or transactions

	optional_parameters=None: Values for option paramters

The resource and resource_class parameters are required. You must also provide either
the search_filter parameter or the dmql_query parameter.

The dmql query is what RETS is expecting and the search_filter dict ends up
creating the dmql to be sent to rets.

>>> search_res = rets_client.search('Property', 'RES', dmql_query='(Status=A)')
>>> the_same_res = rets_client.search('Property', 'RES', search_filter={'Status': 'A"})

Many RETS servers limit the number of results returned with a search request.
You may pass the limit and/or offset parameters to the search method to better
control the result set.

>>> small_res = rets_client.search('Property', 'RES', search_filter={'Status': 'A"}, limit=1)

The small_res just has a single listing returned.

>>> first_res = rets_client.search('Property', 'RES', search_filter={'Status': 'A"})

The RETS server only returned the first 10,000 results from this query.
Do a second query to get the rest of the results.

>>> second_res = rets_client.search('Property', 'RES', search_filter={'Status': 'A"}, offset=10000)

Lastly, if there are any other parameters to send to the Search end point,
you may provide them in the optional_parameters dict.

Filters

Complex queries in DQML can be troublesome to read and maintain. Creating
these queries as search_filter dictionaries can make this a little better.

The following logical operators are parsed by client.

	$gte: numeric or datetime values greater than or equal to this.

	$lte: numeric or datetime values less than or equal than to this.

	$contains: a string contains these characters anywhere.

	$begins: a string begins with these characters.

	$ends: a string ends with these characters.

	$in: a list of possible values a field can contain.

	$nin: a list of values a field cannot contain.

	$neq: the value must not equal this.

Additionally, all date, datetime, and time objects passed to the search_filter
are converted to the appropriate format expected by RETS server.

Examples Search Filters

Active listings in the past 48 hours.

>>> two_days_ago = datetime.today() - datetime.timedelta(days=2)
>>> filter = {
 "Status": "Active",
 "CreatedDatetime": {
 "$gte": two_days_ago
 }
 }
>>> results = rets_client.search('Property', 'RES', search_filter=filter)

Expensive properties that have been on the market over 5 months

>>> five_months_ago = datetime.today() - datetime.timedelta(months=5)
>>> filter = {
 "Status": "Active",
 "CreatedDatetime": {
 "$lte": five_months_ago
 }
 }
 }
>>> results = rets_client.search('Property', 'RES', search_filter=filter)

Listings on a “Main” street in a neighborhood that contains “Quail West”.
(Some RETS use legal descriptions of neighborhood data or allow brokers to
enter inconsistent neighborhood names)

>>> filter = {
 "Status": "Active",
 "StreetName": {
 "$begins": "Main S"
 },
 "DevelopmentName": {
 "$contains": "Quail West"
 }
>>> results = rets_client.search('Property', 'RES', search_filter=filter)

At least four bedrooms, two to three bathrooms, under $150,000.

>>> filter = {
 "Status": "Active",
 "Bedrooms": {
 "$gte": 4
 },
 "Bathrooms": {
 "$in": [2, 3]
 },
 "ListPrice": {
 "$lte": 150000
 }
 }
>>> results = rets_client.search('Property', 'RES', search_filter=filter)

Search Results

Searches with the RETS client return a list of dictionaries that represents listings of a search result.

RETS Exceptions

There are many RETS Reply Codes that can be returned from the server. As a rule, this rets library raises a
rets.exceptions.RETSException for all reply codes that are non-zero. The reply_code and reply_text are set as
parameters for the exception to make it easier for applications to catch and respond to specific reply codes.

Contributing

This RETS client has a long way to go, and keeping up with new RESO Standards [http://www.reso.org/data-dictionary/]
, RETS 2.0, and other features will require ongoing maintenance.
Please feel free to fork this repo and make pull requests to the development branch
if you wish to contribute. Ensure that all new code has accompanying
tests. Travis-CI will run your code through the current and new tests
when you make a pull request.

All pull requests should reference an Github issue [https://github.com/refindlyllc/rets/issues]. Features
and bugs should be discussed in the issue rather than be discussed in a pull request.

Many thanks to the passive contribution of @troydavisson [https://github.com/troydavisson]
for his work on PHRETS [https://github.com/troydavisson/PHRETS]. We shamelessly used many of his great conventions to
make this project successful.

Testing

If you wish to test the code prior to contribution
nosetests --with-coverage --cover-package=rets

Helpful RETS Links

	http://www.reso.org/glossary/

	https://www.flexmls.com/developers/rets/tutorials/example-rets-session/

	http://www.realtor.org/retsorg.nsf/pages/docs

RETS Changelog

0.3.8

	Multipart responses with XML and noncomplient rets functions.

0.3.7

	Addressed potential unicode -> ascii issue in Python2

0.3.6

	Fixed Lookup -> LookupType in XML example and parsing. Doing the metadata LOOKUP-TYPE now functions as expected

0.3.5

	Forcing dict and OrderdDict types when sending search_filters to the session.

0.3.4

	Allowing users to specify the xml format when initializing the session with metadata_format

0.3.3

	Minor bug fix

0.3.2

	Checking the RETS response code with the login parser as well.

0.3.1

	Bug fix for GET requests to RETS servers.

	Minor documentation update.

0.3.0

	Search method now returns a list instead of an iterator. This allows us to catch maxrows internally and automatically
make subsequent reqeusts with offsets rather than forcing the client to catch and adapt. As the size of the reply is often
small, getting even ~32k listings of data was >300k in memory, this results should not affect the memory footprint.

	Added the auto_offset parameter for Session.search method. Defaults to True for making subsequent search requests
if the RETS server truncated the number of requested listings.

0.2.0

	Significatn changes to exception raising. No more InvalidFormat exception. ValueErrors are more appropriate for
input errors and RETSExceptions for consistently handling non-zero reply codes from the RETS Server. The RETSException
now has reply_code and reply_text parameters.

0.1.3

	get_object requests with location=1 now parse the response appropriately

0.1.2

	getObject dictionaries now include md5 fingerprints as content_md5

0.1.1

	Multipart image downloads working in Python2. Still not working in Python3

0.1.0

	No results continues generator

0.0.12

	Action capability called correctly

	RETS Version no longer strips RETS/ prematurely

	Added additional INVALID_VERSION reply code for cathing STANDARD_XML

	Minor Bug Fixes

0.0.8

	Removing lxml from requirements

	Parsing STANDARD-XML

	Removing need to manage RETS version

	User Agent Auth

0.0.7

	Streaming search results

Description

GitHub Issues

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

